Dev Builds » 20230531-0651

Use this dev build

NCM plays each Stockfish dev build 20,000 times against Stockfish 15. This yields an approximate Elo difference and establishes confidence in the strength of the dev builds.

Summary

Host Duration Avg Base NPS Games WLD Standard Elo Ptnml(0-2) Gamepair Elo

Test Detail

ID Host Base NPS Games WLD Standard Elo Ptnml(0-2) Gamepair Elo CLI PGN

Commit

Commit ID c1fff71650e2f8bf5a2d63bdc043161cdfe8e460
Author Linmiao Xu
Date 2023-05-31 06:51:22 UTC
Update NNUE architecture to SFNNv6 with larger L1 size of 1536 Created by training a new net from scratch with L1 size increased from 1024 to 1536. Thanks to Vizvezdenec for the idea of exploring larger net sizes after recent training data improvements. A new net was first trained with lambda 1.0 and constant LR 8.75e-4. Then a strong net from a later epoch in the training run was chosen for retraining with start-lambda 1.0 and initial LR 4.375e-4 decaying with gamma 0.995. Retraining was performed a total of 3 times, for this 4-step process: 1. 400 epochs, lambda 1.0 on filtered T77+T79 v6 deduplicated data 2. 800 epochs, end-lambda 0.75 on T60T70wIsRightFarseerT60T74T75T76.binpack 3. 800 epochs, end-lambda 0.75 and early-fen-skipping 28 on the master dataset 4. 800 epochs, end-lambda 0.7 and early-fen-skipping 28 on the master dataset In the training sequence that reached the new nn-8d69132723e2.nnue net, the epochs used for the 3x retraining runs were: 1. epoch 379 trained on T77T79-filter-v6-dd.min.binpack 2. epoch 679 trained on T60T70wIsRightFarseerT60T74T75T76.binpack 3. epoch 799 trained on the master dataset For training from scratch: python3 easy_train.py \ --experiment-name new-L1-1536-T77T79-filter-v6dd \ --training-dataset /data/T77T79-filter-v6-dd.min.binpack \ --max_epoch 400 \ --lambda 1.0 \ --start-from-engine-test-net False \ --engine-test-branch linrock/Stockfish/L1-1536 \ --nnue-pytorch-branch linrock/Stockfish/misc-fixes-L1-1536 \ --tui False \ --gpus "0," \ --seed $RANDOM Retraining commands were similar to each other. For the 3rd retraining run: python3 easy_train.py \ --experiment-name L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-Re3-sameData \ --training-dataset /data/leela96-dfrc99-v2-T60novdecT80juntonovjanfebT79aprmayT78jantosepT77dec-v6dd.binpack \ --early-fen-skipping 28 \ --max_epoch 800 \ --start-lambda 1.0 \ --end-lambda 0.7 \ --lr 4.375e-4 \ --gamma 0.995 \ --start-from-engine-test-net False \ --start-from-model /data/L1-1536-T77T79-v6dd-Re1-LeelaFarseer-Re2-masterDataset-nn-epoch799.nnue \ --engine-test-branch linrock/Stockfish/L1-1536 \ --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes-L1-1536 \ --tui False \ --gpus "0," \ --seed $RANDOM The T77+T79 data used is a subset of the master dataset available at: https://robotmoon.com/nnue-training-data/ T60T70wIsRightFarseerT60T74T75T76.binpack is available at: https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG Local elo at 25k nodes per move vs. nn-e1fb1ade4432.nnue (L1 size 1024): nn-epoch759.nnue : 26.9 +/- 1.6 Failed STC https://tests.stockfishchess.org/tests/view/64742485d29264e4cfa75f97 LLR: -2.94 (-2.94,2.94) <0.00,2.00> Total: 13728 W: 3588 L: 3829 D: 6311 Ptnml(0-2): 71, 1661, 3610, 1482, 40 Failing LTC https://tests.stockfishchess.org/tests/view/64752d7c4a36543c4c9f3618 LLR: -1.91 (-2.94,2.94) <0.50,2.50> Total: 35424 W: 9522 L: 9603 D: 16299 Ptnml(0-2): 24, 3579, 10585, 3502, 22 Passed VLTC 180+1.8 https://tests.stockfishchess.org/tests/view/64752df04a36543c4c9f3638 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 47616 W: 13174 L: 12863 D: 21579 Ptnml(0-2): 13, 4261, 14952, 4566, 16 Passed VLTC SMP 60+0.6 th 8 https://tests.stockfishchess.org/tests/view/647446ced29264e4cfa761e5 LLR: 2.94 (-2.94,2.94) <0.50,2.50> Total: 19942 W: 5694 L: 5451 D: 8797 Ptnml(0-2): 6, 1504, 6707, 1749, 5 closes https://github.com/official-stockfish/Stockfish/pull/4593 bench 2222567
Copyright 2011–2024 Next Chess Move LLC