Update default net to nn-3c0054ea9860.nnu
First things first...
this PR is being made from court. Today, Tord and Stéphane, with broad support
of the developer community are defending their complaint, filed in Munich, against ChessBase.
With their products Houdini 6 and Fat Fritz 2, both Stockfish derivatives,
ChessBase violated repeatedly the Stockfish GPLv3 license. Tord and Stéphane have terminated
their license with ChessBase permanently. Today we have the opportunity to present
our evidence to the judge and enforce that termination. To read up, have a look at our blog post
https://stockfishchess.org/blog/2022/public-court-hearing-soon/ and
https://stockfishchess.org/blog/2021/our-lawsuit-against-chessbase/
This PR introduces a net trained with an enhanced data set and a modified loss function in the trainer.
A slight adjustment for the scaling was needed to get a pass on standard chess.
passed STC:
https://tests.stockfishchess.org/tests/view/62c0527a49b62510394bd610
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 135008 W: 36614 L: 36152 D: 62242
Ptnml(0-2): 640, 15184, 35407, 15620, 653
passed LTC:
https://tests.stockfishchess.org/tests/view/62c17e459e7d9997a12d458e
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 28864 W: 8007 L: 7749 D: 13108
Ptnml(0-2): 47, 2810, 8466, 3056, 53
Local testing at a fixed 25k nodes resulted in
Test run1026/easy_train_data/experiments/experiment_2/training/run_0/nn-epoch799.nnue
localElo: 4.2 +- 1.6
The real strength of the net is in FRC and DFRC chess where it gains significantly.
Tested at STC with slightly different scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c13a4002ba5d0a774d20d4
Elo: 29.78 +-3.4 (95%) LOS: 100.0%
Total: 10000 W: 2007 L: 1152 D: 6841
Ptnml(0-2): 31, 686, 2804, 1355, 124
nElo: 59.24 +-6.9 (95%) PairsRatio: 2.06
DFRC:
https://tests.stockfishchess.org/tests/view/62c13a5702ba5d0a774d20d9
Elo: 55.25 +-3.9 (95%) LOS: 100.0%
Total: 10000 W: 2984 L: 1407 D: 5609
Ptnml(0-2): 51, 636, 2266, 1779, 268
nElo: 96.95 +-7.2 (95%) PairsRatio: 2.98
Tested at LTC with identical scaling:
FRC:
https://tests.stockfishchess.org/tests/view/62c26a3c9e7d9997a12d6caf
Elo: 16.20 +-2.5 (95%) LOS: 100.0%
Total: 10000 W: 1192 L: 726 D: 8082
Ptnml(0-2): 10, 403, 3727, 831, 29
nElo: 44.12 +-6.7 (95%) PairsRatio: 2.08
DFRC:
https://tests.stockfishchess.org/tests/view/62c26a539e7d9997a12d6cb2
Elo: 40.94 +-3.0 (95%) LOS: 100.0%
Total: 10000 W: 2215 L: 1042 D: 6743
Ptnml(0-2): 10, 410, 3053, 1451, 76
nElo: 92.77 +-6.9 (95%) PairsRatio: 3.64
This is due to the mixing in a significant fraction of DFRC training data in the final training round. The net is
trained using the easy_train.py script in the following way:
```
python easy_train.py \
--training-dataset=../Leela-dfrc_n5000.binpack \
--experiment-name=2 \
--nnue-pytorch-branch=vondele/nnue-pytorch/lossScan4 \
--additional-training-arg=--param-index=2 \
--start-lambda=1.0 \
--end-lambda=0.75 \
--gamma=0.995 \
--lr=4.375e-4 \
--start-from-engine-test-net True \
--tui=False \
--seed=$RANDOM \
--max_epoch=800 \
--auto-exit-timeout-on-training-finished=900 \
--network-testing-threads 8 \
--num-workers 12
```
where the data set used (Leela-dfrc_n5000.binpack) is a combination of our previous best data set (mix of Leela and some SF data) and DFRC data, interleaved to form:
The data is available in https://drive.google.com/drive/folders/1S9-ZiQa_3ApmjBtl2e8SyHxj4zG4V8gG?usp=sharing
Leela mix: https://drive.google.com/file/d/1JUkMhHSfgIYCjfDNKZUMYZt6L5I7Ra6G/view?usp=sharing
DFRC: https://drive.google.com/file/d/17vDaff9LAsVo_1OfsgWAIYqJtqR8aHlm/view?usp=sharing
The training branch used is
https://github.com/vondele/nnue-pytorch/commits/lossScan4
A PR to the main trainer repo will be made later. This contains a revised loss function, now computing the loss from the score based on the win rate model, which is a more accurate representation than what we had before. Scaling constants are tweaked there as well.
closes https://github.com/official-stockfish/Stockfish/pull/4100
Bench: 5186781