Dev Builds » 20230329-1937

Use this dev build

NCM plays each Stockfish dev build 20,000 times against Stockfish 15. This yields an approximate Elo difference and establishes confidence in the strength of the dev builds.

Summary

Host Duration Avg Base NPS Games WLD Standard Elo Ptnml(0-2) Gamepair Elo

Test Detail

ID Host Base NPS Games WLD Standard Elo Ptnml(0-2) Gamepair Elo CLI PGN

Commit

Commit ID 37160c4b1632245d46d86cec7bd22b76f5a87531
Author Linmiao Xu
Date 2023-03-29 19:37:52 UTC
Update default net to nn-dabb1ed23026.nnue Created by retraining the master net with these modifications: * New filtering methods for existing data from T80 sep+oct2022, T79 apr2022, T78 jun+jul+aug+sep2022, T77 dec2021 * Adding new filtered data from T80 aug2022 and T78 apr+may2022 * Increasing early-fen-skipping from 28 to 30 ``` python3 easy_train.py \ --experiment-name leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3-sk30 \ --training-dataset /data/leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3.binpack \ --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \ --start-from-engine-test-net True \ --early-fen-skipping 30 \ --max_epoch 900 \ --start-lambda 1.0 \ --end-lambda 0.7 \ --lr 4.375e-4 \ --gamma 0.995 \ --tui False \ --gpus "0," \ --seed $RANDOM ``` The v3 filtering used for data from T77dec 2021 differs from v2 filtering in that: * To improve binpack compression, positions after ply 28 were skipped during training by setting position scores to VALUE_NONE (32002) instead of removing them entirely * All early-game positions with ply <= 28 were removed to maximize binpack compression * Only bestmove captures at d6pv2 search were skipped, not 2nd bestmove captures * Binpack compression was repaired for the remaining positions by effectively replacing bestmoves with "played moves" to maintain contiguous sequences of positions in the training game data After improving binpack compression, The T77 dec2021 data size was reduced from 95G to 19G. The v6 filtering used for data from T80augsepoctT79aprT78aprtosep 2022 differs from v2 in that: * All positions with only one legal move were removed * Tighter score differences at d6pv2 search were used to remove more positions with only one good move than before * d6pv2 search was not used to remove positions where the best 2 moves were captures ``` python3 interleave_binpacks.py \ nn-547-dataset/leela96-eval-filt-v2.binpack \ nn-547-dataset/dfrc99-eval-filt-v2.binpack \ nn-547-dataset/test80-nov2022-12tb7p-eval-filt-v2-d6.binpack \ nn-547-dataset/T79-may2022-12tb7p-eval-filt-v2.binpack \ nn-547-dataset/T60-nov2021-12tb7p-eval-filt-v2.binpack \ nn-547-dataset/T60-dec2021-12tb7p-eval-filt-v2.binpack \ filt-v6/test80-aug2022-16tb7p-filter-v6.binpack \ filt-v6/test80-sep2022-16tb7p-filter-v6.binpack \ filt-v6/test80-oct2022-16tb7p-filter-v6.binpack \ filt-v6/test79-apr2022-16tb7p-filter-v6.binpack \ filt-v6/test78-aprmay2022-16tb7p-filter-v6.binpack \ filt-v6/test78-junjulaug2022-16tb7p-filter-v6.binpack \ filt-v6/test78-sep2022-16tb7p-filter-v6.binpack \ filt-v3/test77-dec2021-16tb7p-filt-v3.binpack \ /data/leela96-dfrc99-T80novT79mayT60novdec-v2-T80augsepoctT79aprT78aprtosep-v6-T77dec-v3.binpack ``` The code for the new data filtering methods is available at: https://github.com/linrock/Stockfish/tree/nnue-data-v3/nnue-data The code for giving hexword names to .nnue files is at: https://github.com/linrock/nnue-namer Links for downloading the training data components can be found at: https://robotmoon.com/nnue-training-data/ Local elo at 25k nodes per move: nn-epoch779.nnue : 0.6 +/- 3.1 Passed STC: https://tests.stockfishchess.org/tests/view/64212412db43ab2ba6f8efb0 LLR: 2.94 (-2.94,2.94) <0.00,2.00> Total: 82256 W: 22185 L: 21809 D: 38262 Ptnml(0-2): 286, 9065, 22067, 9407, 303 Passed LTC: https://tests.stockfishchess.org/tests/view/64223726db43ab2ba6f91d6c LLR: 2.94 (-2.94,2.94) <0.50,2.50> Total: 30840 W: 8437 L: 8149 D: 14254 Ptnml(0-2): 14, 2891, 9323, 3177, 15 closes https://github.com/official-stockfish/Stockfish/pull/4465 bench 5101970
Copyright 2011–2024 Next Chess Move LLC